skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xuefeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the past decade, topological insulators have received enormous attention for their potential in energy‐efficient spin‐to‐charge conversion, enabled by strong spin‐orbit coupling and spin‐momentum locked surface states. Despite extensive research, the spin‐to‐charge conversion efficiency, usually characterized by the spin Hall angle (θSH), remains relatively low at room temperature. In this work, pulsed laser deposition is employed to fabricate high‐quality ternary topological insulator (Bi0.1Sb0.9)2Te3thin films on magnetic insulator Y3Fe5O12. It is found that the value ofθSHreaches ≈0.76 at room temperature and increases to ≈0.9 as the Fermi level is tuned to cross topological surface states via electrical gating. These findings provide an innovative approach to tailoring the spin‐to‐charge conversion in topological insulators and pave the way for their applications in energy‐efficient spintronic devices. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  2. null (Ed.)
    Cell adhesive force, exerting on the local matrix or neighboring cells, plays a critical role in regulating many cell functions and physiological processes. In the past four decades, significant efforts have been dedicated to cell adhesive force detection, visualization and quantification. A recent important methodological advancement in cell adhesive force visualization is to adopt force-to-fluorescence conversion instead of force-to-substrate strain conversion, thus greatly improving the sensitivity and resolution of force imaging. This review summarizes the recent development of force imaging techniques (collectively termed as cell adhesive force microscopy or CAFM here), with a particular focus on the improvement of CAFM’s spatial resolution and the biomaterial choices for constructing the tension sensors used in force visualization. This review also highlights the importance of DNA-based tension sensors in cell adhesive force imaging and the recent breakthrough in the development of super-resolution CAFM. 
    more » « less
  3. null (Ed.)
    In this paper, a new decadal resolution stalagmite δ18O record covering 10.4–6.5 ka BP from Kulishu cave in Beijing, north China is presented in combination with the published stalagmite δ18 O record covering 10.4–14.0 ka BP in the same cave. Five significant monsoon collapses were identified around 11.5, 11.0, 10.0, 9.4, and 8.2 ka BP as well as three smaller ones around 10.3, 9.0, and 8.6 ka BP. The weak monsoon episodes around 8.6 and 8.2 ka BP form the two-step structure of the 8.2 ka event. All monsoon collapses, coeval with the cooling in northern high-latitude records, are correlated with Lakes Agassiz-Ojibway outbursts. Thus, our data support the idea of freshwater forcing of abrupt climate anomalies during the early Holocene. Nevertheless, the decreased irradiance together with freshwater outburst may account for the 9.2/9.3 ka event, which is expressed more significantly in low-latitude records. 
    more » « less
  4. Podosomes and invadopodia, collectively termed invadosomes, are adhesive and degradative membrane structures formed in many types of cells and are well known for recruiting various proteases. However, another major class of degradative enzymes, deoxyribonuclease (DNase), remains unconfirmed and not studied in invadosomes. Here, using surface-immobilized nuclease sensor (SNS), we demonstrated that invadosomes recruit DNase to their core regions, which degrade extracellular double-stranded DNA. We further identified the DNase as GPI-anchored membrane-bound DNase X. DNase recruitment is ubiquitous and consistent in invadosomes of all tested cell types. DNase activity exhibits within a minute after actin nucleation, functioning concomitantly with protease in podosomes but preceding it in invadopodia. We further showed that macrophages form DNase-active podosome rosettes surrounding bacteria or micropatterned antigen islets, and the podosomes directly degrade bacterial DNA on a surface, exhibiting an apparent immunological function. Overall, this work reports DNase in invadosomes for the first time, suggesting a richer arsenal of degradative enzymes in invadosomes than known before. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)